If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+35x=0
a = -16; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·(-16)·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*-16}=\frac{-70}{-32} =2+3/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*-16}=\frac{0}{-32} =0 $
| 1+6g=10+3g | | 15m=12m | | 5(x+9)=8x+5-3x+40 | | 6x-30+4x+70=180 | | 14x=7(2x+) | | 4(6x-9)=3(8x=12) | | 8-8m=-7m | | -n=-2n-2 | | 4x-3+9x=2x-5+4x+2+7x | | 0.09(10)+x=0.05(10+x) | | 3xx12÷5=2xx15x÷20 | | 8p-5=6p+17 | | -5-6z=-7z-1 | | -1/4y+15=2/5y-11 | | -4x-3=3x-4=7x | | 32+5x+1=8x+12 | | 3x(12)÷(5)=2x(15x)÷20 | | 3(x-2)/2=3(x+8)/2 | | 4x-17=90 | | m+3(m-1)=10 | | -5(r-2)=26-r | | (6+7)+b=6+(7+b) | | 22x-1+21x+2=180 | | (3x)(12)÷(5)=(2x)(15x)÷20 | | X2=x2+x | | -2m+10=-10 | | .9+x=1.8+0.20x | | -16r−-4r+-6r−-16=-20 | | Y=8x-28 | | (3x)(12)-(5)=(2x)(15x)÷20 | | 5p=-8+9p | | -2x+5x-7x=0 |